The impact of resampling and denoising deep learning algorithms on radiomics in brain metastases MRI
Published in Cancers, 2021
Due to the central role of magnetic resonance Imaging (MRI) in the management of patients with cancer, waiting lists exceed clinically relevant delays. For this reason, many research groups and MRI manufacturers develop algorithms as resampling and denoising models to allow faster acquisition time without deterioration in image quality. Whereas these algorithms are available in all new MRI, it is not clear how they will impact image features as well as the validity of statistical model of radiomics which use deep images characteristics to predict treatment outcome. The aim of this study was to develop resampling and denoising deep learning (DL) models and evaluate their impact on radiomics from post-Gd-T1w-MRI brain images with brain metastases. We show that resampling and denoising DL models reconstruct low resolution and noised MRI images acquired quickly into high quality images. While fast acquisition loses most of the radiomic-features and invalidates predictive radiomic models, DL models restore these parameters.