Posts by Collection

portfolio

publications

The impact of resampling and denoising deep learning algorithms on radiomics in brain metastases MRI

Published in Cancers, 2021

Due to the central role of magnetic resonance Imaging (MRI) in the management of patients with cancer, waiting lists exceed clinically relevant delays. For this reason, many research groups and MRI manufacturers develop algorithms as resampling and denoising models to allow faster acquisition time without deterioration in image quality. Whereas these algorithms are available in all new MRI, it is not clear how they will impact image features as well as the validity of statistical model of radiomics which use deep images characteristics to predict treatment outcome. The aim of this study was to develop resampling and denoising deep learning (DL) models and evaluate their impact on radiomics from post-Gd-T1w-MRI brain images with brain metastases. We show that resampling and denoising DL models reconstruct low resolution and noised MRI images acquired quickly into high quality images. While fast acquisition loses most of the radiomic-features and invalidates predictive radiomic models, DL models restore these parameters.

Pretraining Representations for Bioacoustic Few-Shot Detection Using Supervised Contrastive Learning

Published in DCASE, 2023

Deep learning has been widely used recently for sound event detection and classification. Its success is linked to the availability of sufficiently large datasets, possibly with corresponding annotations when supervised learning is considered. In bioacoustic applications, most tasks come with few labelled training data, because annotating long recordings is time consuming and costly. Therefore supervised learning is not the best suited approach to solve bioacoustic tasks. The bioacoustic community recasted the problem of sound event detection within the framework of few-shot learning, i.e. training a system with only few labeled examples. The few-shot bioacoustic sound event detection task in the DCASE challenge focuses on detecting events in long audio recordings given only five annotated examples for each class of interest. In this paper, we show that learning a rich feature extractor from scratch can be achieved by leveraging data augmentation using a supervised contrastive learning framework. We highlight the ability of this framework to transfer well for five-shot event detection on previously unseen classes in the training data. We obtain an F-score of 63.46\% on the validation set and 42.7\% on the test set, ranking second in the DCASE challenge. We provide an ablation study for the critical choices of data augmentation techniques as well as for the learning strategy applied on the training set.

Pretraining Respiratory Sound Representations using Metadata and Contrastive Learning

Published in WASPAA, 2023

Methods based on supervised learning using annotations in an endto-end fashion have been the state-of-the-art for classification problems. However, they may be limited in their generalization capability, especially in the low data regime. In this study, we address this issue using supervised contrastive learning combined with available metadata to solve multiple pretext tasks that learn a good representation of data. We apply our approach on respiratory sound classification. This task is suited for this setting as demographic information such as sex and age are correlated with presence of lung diseases, and learning a system that implicitly encode this information may better detect anomalies. Supervised contrastive learning is a paradigm that learns similar representations to samples sharing the same class labels and dissimilar representations to samples with different class labels. The feature extractor learned using this paradigm extract useful features from the data, and we show that it outperforms cross-entropy in classifying respiratory anomalies in two different datasets. We also show that learning representations using only metadata, without class labels, obtains similar performance as using cross entropy with those labels only. In addition, when combining class labels with metadata using multiple supervised contrastive learning, an extension of supervised contrastive learning solving an additional task of grouping patients within the same sex and age group, more informative features are learned. This work suggests the potential of using multiple metadata sources in supervised contrastive settings, in particular in settings with class imbalance and few data.

Regularized Contrastive Pre-training for Few-shot Bioacoustic Sound Detection

Published in ICASSP, 2024

Bioacoustic sound event detection allows for better understanding of animal behavior and for better monitoring biodiversity using audio. Deep learning systems can help achieve this goal. However, it is difficult to acquire sufficient annotated data to train these systems from scratch. To address this limitation, the Detection and Classification of Acoustic Scenes and Events (DCASE) community has recasted the problem within the framework of few-shot learning and organize an annual challenge for learning to detect animal sounds from only five annotated examples. In our study, we introduce a regularization to supervised contrastive loss, to learn non redundant features that exhibit effective transferability to few-shot tasks involving the detection of animal sounds not encountered during the training phase. Our method achieves a high F-score of 61.52%±0.48 when no feature adaptation is applied, and an F-score of 68.19%±0.75 when we further adapt the learned features for each new target task. This work aims to lower the entry bar to few-shot bioacoustic sound event detection by proposing a simple and yet effective framework for this task, and by providing open-source code.

Self-Supervised Learning for Few-Shot Bird Sound Classification

Published in ICASSPW, 2024

Self-supervised learning (SSL) in audio holds significant potential across various domains, particularly in situations where abundant, unlabeled data is readily available at no cost. This is pertinent in bioacoustics, where biologists routinely collect extensive sound datasets from the natural environment. In this study, we demonstrate that SSL is capable of acquiring meaningful representations of bird sounds from audio recordings without the need for annotations. Our experiments showcase that these learned representations exhibit the capacity to generalize to new bird species in few-shot learning (FSL) scenarios. Additionally, we show that selecting windows with high bird activation for self-supervised learning, using a pretrained audio neural network, significantly enhances the quality of the learned representations.

Mixture of Mixups for Multi-label Classification of Rare Anuran Sounds

Published in EUSIPCO, 2024

Multi-label imbalanced classification poses a significant challenge in machine learning, particularly evident in bioacoustics where animal sounds often co-occur, and certain sounds are much less frequent than others. This paper focuses on the specific case of classifying anuran species sounds using the dataset AnuraSet, that contains both class imbalance and multi-label examples. To address these challenges, we introduce Mixture of Mixups (Mix2), a framework that leverages mixing regularization methods Mixup, Manifold Mixup, and MultiMix. Experimental results show that these methods, individually, may lead to suboptimal results; however, when applied randomly, with one selected at each training iteration, they prove effective in addressing the mentioned challenges, particularly for rare classes with few occurrences. Further analysis reveals that Mix2 is also proficient in classifying sounds across various levels of class co-occurrences.

Domain-Invariant Representation Learning of Bird Sounds

Published in arXiv, 2024

Passive acoustic monitoring (PAM) is crucial for bioacoustic research, enabling non-invasive species tracking and biodiversity monitoring. Citizen science platforms like Xeno-Canto provide large annotated datasets from focal recordings, where the target species is intentionally recorded. However, PAM requires monitoring in passive soundscapes, creating a domain shift between focal and passive recordings, which challenges deep learning models trained on focal recordings. To address this, we leverage supervised contrastive learning to improve domain generalization in bird sound classification, enforcing domain invariance across same-class examples from different domains. We also propose ProtoCLR (Prototypical Contrastive Learning of Representations), which reduces the computational complexity of the SupCon loss by comparing examples to class prototypes instead of pairwise comparisons. Additionally, we present a new few-shot classification evaluation based on BIRB, a large-scale bird sound benchmark to evaluate bioacoustic pre-trained models.

Acoustic identification of individual animals based on hierarchical contrastive learning

Published in ICASSP, 2025

Acoustic identification of individual animals (AIID) is closely related to audio-based species classification but requires a finer level of detail to distinguish between individual animals within the same species. In this work, we frame AIID as a hierarchical multi-label classification task and propose the use of hierarchy-aware loss functions to learn robust representations of individual identities that maintain the hierarchical relationships among species and taxa. Our results demonstrate that hierarchical embeddings not only enhance identification accuracy at the individual level but also at higher taxonomic levels, effectively preserving the hierarchical structure in the learned representations. By comparing our approach with non-hierarchical models, we highlight the advantage of enforcing this structure in the embedding space. Additionally, we extend the evaluation to the classification of novel individual classes, demonstrating the potential of our method in open-set classification scenarios.

talks

teaching

Teaching experience 1

Undergraduate course, University 1, Department, 2014

This is a description of a teaching experience. You can use markdown like any other post.

Teaching experience 2

Workshop, University 1, Department, 2015

This is a description of a teaching experience. You can use markdown like any other post.